我们考虑了上下文匪徒的违规评估(OPE)问题,其中目标是使用日志记录策略收集的数据估计目标策略的值。 ope的最流行方法是通过组合直接方法(DM)估计和涉及逆倾向得分(IP)的校正项而获得的双重稳健(DR)估计器的变型。现有算法主要关注降低大型IPS引起的博士估算器方差的策略。我们提出了一种称为双重强大的新方法,具有信息借用和基于上下文的交换(DR-IC)估计,专注于减少偏差和方差。 DR-IC估计器用参数奖励模型替换标准DM估计器,该参数奖励模型通过依赖于IPS的相关结构从“更近的”上下文中借用信息。 DR-IC估计器还基于特定于上下文的切换规则在该修改的DM估计器和修改的DR估计器之间自适应地插值。我们对DR-IC估算员的表现提供了可证明的保证。我们还展示了DR-IC估计的卓越性能与艺术最先进的OPE算法相比,在许多基准问题上的算法相比。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
深度学习(DL)系统的安全性是一个极为重要的研究领域,因为它们正在部署在多个应用程序中,因为它们不断改善,以解决具有挑战性的任务。尽管有压倒性的承诺,但深度学习系统容易受到制作的对抗性例子的影响,这可能是人眼无法察觉的,但可能会导致模型错误分类。对基于整体技术的对抗性扰动的保护已被证明很容易受到更强大的对手的影响,或者证明缺乏端到端评估。在本文中,我们试图开发一种新的基于整体的解决方案,该解决方案构建具有不同决策边界的防御者模型相对于原始模型。通过(1)通过一种称为拆分和剃须的方法转换输入的分类器的合奏,以及(2)通过一种称为对比度功能的方法限制重要特征,显示出相对于相对于不同的梯度对抗性攻击,这减少了将对抗性示例从原始示例转移到针对同一类的防御者模型的机会。我们使用标准图像分类数据集(即MNIST,CIFAR-10和CIFAR-100)进行了广泛的实验,以实现最新的对抗攻击,以证明基于合奏的防御的鲁棒性。我们还在存在更强大的对手的情况下评估稳健性,该对手同时靶向合奏中的所有模型。已经提供了整体假阳性和误报的结果,以估计提出的方法的总体性能。
translated by 谷歌翻译
在解决复杂的现实世界任务方面的最新深度学习(DL)进步导致其在实际应用中广泛采用。但是,这个机会具有重大的潜在风险,因为这些模型中的许多模型都依赖于对各种应用程序进行培训的隐私敏感数据,这使它们成为侵犯隐私的过度暴露威胁表面。此外,基于云的机器学习-AS-A-Service(MLAAS)在其强大的基础架构支持方面的广泛使用扩大了威胁表面,以包括各种远程侧渠道攻击。在本文中,我们首先在DL实现中识别并报告了一个新颖的数据依赖性计时侧通道泄漏(称为类泄漏),该实现源自广泛使用的DL Framework Pytorch中的非恒定时间分支操作。我们进一步展示了一个实用的推理时间攻击,其中具有用户特权和硬标签黑盒访问MLAA的对手可以利用类泄漏来损害MLAAS用户的隐私。 DL模型容易受到会员推理攻击(MIA)的攻击,其中对手的目标是推断在训练模型时是否使用过任何特定数据。在本文中,作为一个单独的案例研究,我们证明了具有差异隐私保护的DL模型(对MIA的流行对策)仍然容易受到MIA的影响,而不是针对对手开发的漏洞泄漏。我们通过进行恒定的分支操作来减轻班级泄漏并有助于减轻MIA,从而开发出易于实施的对策。我们选择了两个标准基准图像分类数据集CIFAR-10和CIFAR-100来训练五个最先进的预训练的DL模型,这是在具有Intel Xeon和Intel Xeon和Intel I7处理器的两个不同的计算环境中,以验证我们的方法。
translated by 谷歌翻译
评估成像中的乳腺癌风险仍然是一个主观过程,在该过程中,放射科医生采用计算机辅助检测(CAD)系统或定性视觉评估来估计乳房密度(PD)。更先进的机器学习(ML)模型已成为量化早期,准确和公平诊断的乳腺癌风险的最有希望的方法,但是医学研究中的这种模型通常仅限于小型单一机构数据。由于患者人口统计和成像特征可能在成像站点之间有很大差异,因此在单机构数据中训练的模型往往不会很好地概括。为了应对这个问题,提出了Mammodl,这是一种开源软件工具,利用UNET体系结构来准确估计乳腺PD和数字乳房X线摄影(DM)的复杂性。通过开放的联合学习(OpenFL)库,该解决方案可以在多个机构的数据集上进行安全培训。 Mammodl是一个比其前任更精简,更灵活的模型,由于对更大,更具代表性的数据集的支持培训,因此具有改进的概括。
translated by 谷歌翻译
多个实例学习(MIL)方法在数字病理学中对GIGA像素大小的全型图像(WSI)进行分类变得越来越流行。大多数MIL方法通过处理所有组织斑块,以单个WSI放大倍率运行。这样的公式诱导了高计算要求,并将WSI级表示的上下文化限制为单个量表。一些MIL方法扩展到多个量表,但在计算上要求更高。在本文中,受病理诊断过程的启发,我们提出了Zoommil,该方法学会了以端到端的方式执行多层缩放。Zoommil通过从多个增强元中汇总组织信息来构建WSI表示。所提出的方法在两个大数据集上的WSI分类中优于最先进的MIL方法,同时大大降低了关于浮点操作(FLOPS)和处理时间的计算需求,最高为40倍。
translated by 谷歌翻译
由于对抗性攻击的存在,深度学习分类器的安全性是一个关键的研究领域。这种攻击通常依赖于可转移性的原则,其中在代理分类器上制作的对手示例倾向于误导目标分类器,即使两个分类器都有相当不同的架构,也要误导目标分类器。抗逆性攻击的集合方法表明,对抗性示例的可能性不太可能在具有不同决策边界的集合中误导多个分类器。然而,最近的集合方法已被证明是易受强烈的对手或表现出缺乏结束到最终评估的影响。本文试图开发一种新的集合方法,该方法在训练过程中使用成对对手稳健的损失(PARL)功能来构造多种不同分类器。 PARL在同时在集合中的每个分类器中输入每个层的梯度。与之前的集合方法相比,建议的培训程序使PARL能够实现对黑盒转移攻击的更高稳健性,而不会对清洁实例的准确性产生不利影响。我们还评估了白盒攻击存在下的稳健性,其中使用目标分类器的参数制作了对抗示例。我们使用标准图像分类数据集在使用标准Reset20分类器培训的标准图像分类数据集目前,使用标准Reset20分类器,以展示所提出的集合方法的稳健性。
translated by 谷歌翻译
乳腺癌是最常见的癌症,并寄存癌症的妇女的最多死亡人数。结合大规模筛查政策的诊断活动的最新进展显着降低了乳腺癌患者的死亡率。然而,病理学家手动检查病理学家的载玻片是麻烦的,耗时的,并且受到显着的和观察者内的变异性。最近,全幻灯片扫描系统的出现授权了病理幻灯片的快速数字化,并启用了开发数字工作流程。这些进步进一步使利用人工智能(AI)来协助,自动化和增强病理诊断。但是AI技术,尤其是深度学习(DL),需要大量的高质量注释数据来学习。构建此类任务特定的数据集造成了几个挑战,例如数据获取级别约束,耗时和昂贵的注释,以及私人信息的匿名化。在本文中,我们介绍了乳腺癌亚型(BRACS)DataSet,一个大队列的注释血清杂环蛋白和eosin(H&E) - 染色的图像,以促进乳房病变的表征。 BRACS包含547个全幻灯片图像(WSIS),并从WSI中提取4539个兴趣区域(ROI)。每个WSI和各自的ROI都是通过三个董事会认证的病理学家的共识注释为不同的病变类别。具体而言,Bracs包括三种病变类型,即良性,恶性和非典型,其进一步亚级分为七个类别。据我们所知,这是WSI和ROI水平的最大的乳腺癌亚型的附带数据集。此外,通过包括被升值的非典型病变,Bracs提供了利用AI更好地理解其特征的独特机会。
translated by 谷歌翻译